NoteSchoolM2續三角函數Rad(弧度): π=180∘\pi=180^\circπ=180∘奇變偶不變 符號看象限 六個三角函數 sinθ\sin\thetasinθ1sinθ=cosecθ\frac{1}{\sin\theta}=\cosec\thetasinθ1=cosecθcosθ\cos\thetacosθ1cosθ=secθ\frac{1}{\cos\theta}=\sec\thetacosθ1=secθtanθ\tan\thetatanθ1tanθ=cotθ\frac{1}{\tan\theta}=\cot\thetatanθ1=cotθ會提供 複角 sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin Bsin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin Bcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=tanA±tanB1∓tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}tan(A±B)=1∓tanAtanBtanA±tanB積化和 2sinAcosB=sin(A+B)+sin(A−B)2 \sin A \cos B = \sin (A + B) + \sin (A - B)2sinAcosB=sin(A+B)+sin(A−B)2cosAcosB=cos(A+B)+cos(A−B)2 \cos A \cos B = \cos (A + B) + \cos (A - B)2cosAcosB=cos(A+B)+cos(A−B)2sinAsinB=cos(A−B)−cos(A+B)2 \sin A \sin B = \cos (A - B) - \cos (A + B)2sinAsinB=cos(A−B)−cos(A+B)和化積 sinA+sinB=2sinA+B2cosA−B2\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}sinA+sinB=2sin2A+Bcos2A−BsinA−sinB=2cosA+B2sinA−B2\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}sinA−sinB=2cos2A+Bsin2A−BcosA+cosB=2cosA+B2cosA−B2\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}cosA+cosB=2cos2A+Bcos2A−BcosA−cosB=−2sinA+B2sinA−B2\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}cosA−cosB=−2sin2A+Bsin2A−B不提供 三角恆等式 tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta}tanθ=cosθsinθsin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=11+tan2θ=sec2θ1 + \tan^2\theta = \sec^2\theta1+tan2θ=sec2θ1+cot2θ=cosec2θ1 + \cot^2\theta = \cosec^2\theta1+cot2θ=cosec2θ二倍角公式 sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\thetasin(2θ)=2sinθcosθcos(2θ)=cos2θ−sin2θ\cos(2\theta) = \cos^2\theta - \sin^2\thetacos(2θ)=cos2θ−sin2θcos(2θ)=2cos2θ−1\cos(2\theta) = 2\cos^2\theta - 1cos(2θ)=2cos2θ−1cos(2θ)=1−2sin2θ\cos(2\theta) = 1 - 2\sin^2\thetacos(2θ)=1−2sin2θtan(2θ)=2tanθ1−tan2θ\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}tan(2θ)=1−tan2θ2tanθsin2θ=12(1−cos2θ)\sin^2\theta = \frac12\left(1 - \cos 2\theta\right)sin2θ=21(1−cos2θ)cos2θ=12(1+cos2θ)\cos^2\theta = \frac12\left(1 + \cos 2\theta\right)cos2θ=21(1+cos2θ)Last updated on January 5, 2026二項式定理