續三角函數

Rad(弧度): π=180\pi=180^\circ

奇變偶不變 符號看象限

六個三角函數

sinθ\sin\theta1sinθ=cosecθ\frac{1}{\sin\theta}=\cosec\theta
cosθ\cos\theta1cosθ=secθ\frac{1}{\cos\theta}=\sec\theta
tanθ\tan\theta1tanθ=cotθ\frac{1}{\tan\theta}=\cot\theta

會提供

複角

sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B

cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B

tan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}

積化和

2sinAcosB=sin(A+B)+sin(AB)2 \sin A \cos B = \sin (A + B) + \sin (A - B)

2cosAcosB=cos(A+B)+cos(AB)2 \cos A \cos B = \cos (A + B) + \cos (A - B)

2sinAsinB=cos(AB)cos(A+B)2 \sin A \sin B = \cos (A - B) - \cos (A + B)

和化積

sinA+sinB=2sinA+B2cosAB2\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}

sinAsinB=2cosA+B2sinAB2\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}

cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}

cosAcosB=2sinA+B2sinAB2\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}


不提供

三角恆等式

tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta}

sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1

1+tan2θ=sec2θ1 + \tan^2\theta = \sec^2\theta

1+cot2θ=cosec2θ1 + \cot^2\theta = \cosec^2\theta

二倍角公式

sin(2θ)=2sinθcosθ\sin(2\theta) = 2\sin\theta\cos\theta
cos(2θ)=cos2θsin2θ\cos(2\theta) = \cos^2\theta - \sin^2\theta

cos(2θ)=2cos2θ1\cos(2\theta) = 2\cos^2\theta - 1

cos(2θ)=12sin2θ\cos(2\theta) = 1 - 2\sin^2\theta
tan(2θ)=2tanθ1tan2θ\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}

sin2θ=12(1cos2θ)\sin^2\theta = \frac12\left(1 - \cos 2\theta\right)

cos2θ=12(1+cos2θ)\cos^2\theta = \frac12\left(1 + \cos 2\theta\right)
Last updated on